A Jacobi-Davidson Method for Solving Complex Symmetric Eigenvalue Problems
نویسندگان
چکیده
We discuss variants of the Jacobi–Davidson method for solving the generalized complex-symmetric eigenvalue problem. The Jacobi–Davidson algorithm can be considered as an accelerated inexact Rayleigh quotient iteration. We show that it is appropriate to replace the Euclidean inner product xy in C by the bilinear form x y. The Rayleigh quotient based on this bilinear form leads to an asymptotically cubically convergent Rayleigh quotient iteration. Advantages of the method are illustrated by numerical examples. We deal with problems from electromagnetics that require the computation of interior eigenvalues.
منابع مشابه
A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...
متن کاملEfficient Methods For Nonlinear Eigenvalue Problems Diploma Thesis
During the last years nonlinear eigenvalue problems of the type T (λ)x = 0 became more and more important in many applications with the rapid development of computing performance. In parallel the minmax theory for symmetric nonlinear eigenvalue problems was developed which reveals a strong connection to corresponding linear problems. We want to review the current theory for symmetric nonlinear ...
متن کاملInexact Newton Preconditioning Techniques for Large Symmetric Eigenvalue Problems
This paper studies a number of Newton methods and use them to define new secondary linear systems of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate that the new schemes can be used efficiently in test problems.
متن کاملRestarting Techniques for the (jacobi-)davidson Symmetric Eigenvalue Methods
The (Jacobi-)Davidson method, which is a popular preconditioned extension to the Arnoldi method for solving large eigenvalue problems, is often used with restarting. This has significant performance shortcomings, since important components of the invariant subspace may be discarded. One way of saving more information at restart is through “thick” restarting, a technique that involves keeping mo...
متن کاملPreconditioning Eigenvalues and Some Comparison of Solvers
Preconditioning techniques are discussed for symmetric eigenvalue problems. The methods Davidson, Jacobi-Davidson, Rayleigh quotient iteration, and preconditioned Lanczos are considered. Some relationships are given between these different approaches, and some experimental comparisons are done. Jacobi-Davidson appears to be efficient in both expense and storage. A hybrid method may be helpful f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2004